# A UK Perspective on IFE

Robbie Scott<sup>1,2</sup>

### **UK Inertial Fusion Consortium**

- ~ 90 members
- 11 UK institutions























### UK Fusion Landscape

#### **Funding Bodies**

- BEIS (UK govt.): Fusion Strategy & Regulation
- UKAEA: Culham Centre for Fusion Energy
  - STEP (£240M)
- STFC: Central Laser Facility
- AWE: Orion

#### **Industry**

Significant

similarities to

Laser Fusion

- First Light Fusion
- General Fusion
- Tokamak Energy
- Scitech Precision

#### **Facilities**

- Joint European Taurus (JET)
- Mega Ampere Spherical Tokamak (MAST)
- ITER
- Vulcan
- Orion
- Extreme Photonics Application Centre (£80M)

#### **Fusion Technology**

- RACE: Robotics in radioactive environments
- H3AT: Tritium handling, storage, and cycle
- MRF: Fusion Materials Development
- FTF: Fusion Materials Testing

### UK Inertial Fusion Landscape

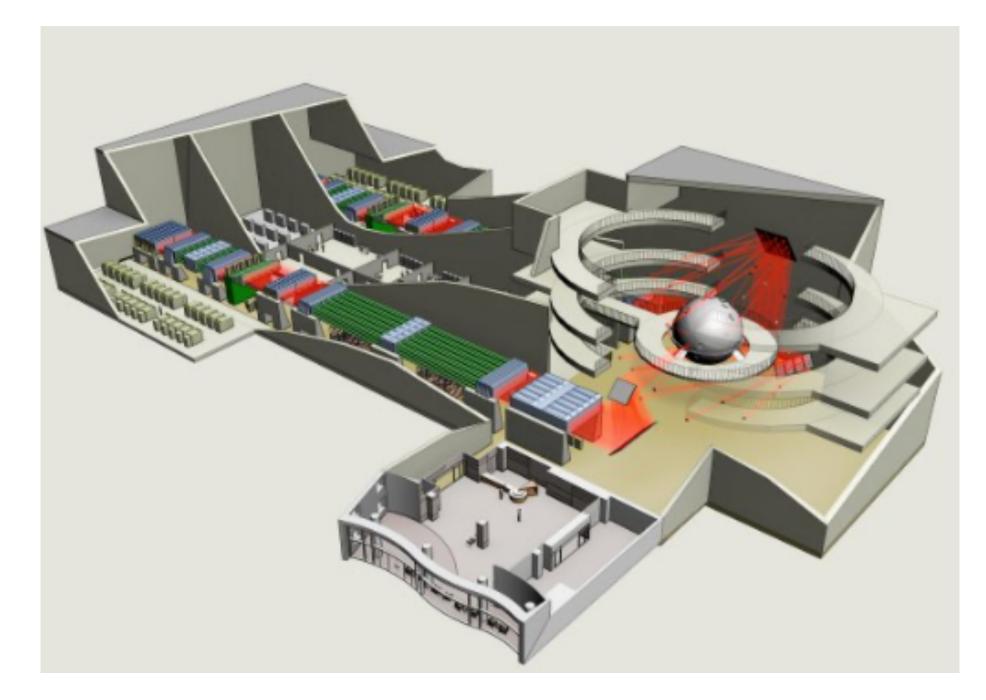
#### Research & Training

- 7 universities
- 1 Centre for Doctoral Training @ York
- World-class High Energy Density Science

### **Facilities and Technology**

- Central Laser Facility (CLF):
  - Laser facilities (Vulcan, Gemini, EPAC)
  - Laser technology development (DiPOLE)
  - Target manufacturing
  - Experimental training
  - Plasma Physics Group

### **Industry**


- First Light Fusion
- General Fusion
- Significant similarities to Laser Fusion
- Scitech Precision

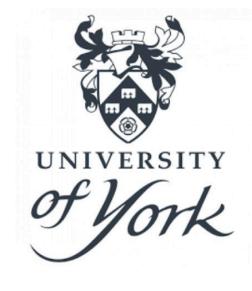
#### **Defence**

- AWE, MoD
  - Orion laser facility
  - Significant capabilities & expertise
- No remit for IFE research

### HiPER

- CLF-led project
- Laser Inertial Fusion Energy demonstration
- Predicated on NIF ignition: Mothballed 2013
- Outputs included:
  - Technology developments: e.g. DiPOLE lasers
  - Extensive economics analyses of IFE
  - IFE chamber design
  - International collaborative research
  - ...




HiPER concept

### UK Inertial Fusion Consortium: Goals

- Enhancing collaboration within the UK HEDS community
- Creating a common voice to facilitate dialogue with funding bodies
- Develop a commonly agreed strategy, encompassing:
  - Laser fusion/High Energy Density Physics research
  - Training the next generation
  - Developing underpinning technologies:
    - Simulation codes
    - Future laser architectures
    - Targetry







### Imperial College London















### UK Inertial Fusion Roadmap

- Download from <u>www.inertial-fusion.co.uk</u>
- Seeks to convey a community consensus on:
  - Why IFE matters
  - The current status of IFE research
  - Recommendations for funding bodies
  - A Roadmap for future developments

The UK Inertial Fusion Roadmap 2021-2035

Prepared on behalf of the UK Inertial Fusion Consortium by the Roadmap Committee with input from the wider consortium.

### Roadmap: Technological Developments

#### **Prototype Laser Fusion Beamline**

- DiPOLE laser-driver technology:
  - Current status: Diode pumped, 10 Hz, ~150 J
  - Development to: >1 kJ level @ 3ω with increased bandwidth

### IFE Capsules

- Scitech Precision & CLF target fabrication
- Economic manufacture via microfluidics

#### **Vulcan 2020**

- Enhanced long-pulse capabilities ~10 kJ
- Increased shot repetition rate 1/minute
- Enhanced diagnostics

#### **Simulation Codes**

- Critical research infrastructure
- Improved predictive capabilities
  - Improved physics models
  - Testing against multi-scale experiments

### Roadmap: Strategic Developments

#### **Training**

- UK-wide High Energy Density Science training scheme
- Spanning 7 universities & labs

#### 2025 UK Review of IFE

- Establish longer-term strategy
- Bring forward in the event of NIF ignition

# UK-US IFE Science & Technology Agreement

- Positive initial discussions:
  - UK government
  - DOE
- Build on existing cooperative framework

#### **A Future Implosion Facility**

- ~ 10 year timeframe
- International funding model?
- Co-location with an XFEL?

### An International Approach to IFE

- ✓ Proven successful long-term funding route: CERN, ITER, Astronomy
- ✓ Government funding: Private equity unlikely to fund projects at > \$2 Bn level
- ✓ Various potential partners: US, UK, Europe, Japan, ...
- X Potential proliferation issues
- X Historically slower than private companies







### An International Collaborative Path Towards IFE

~ 2025 ~ 2028

# Build International Partnership

- Inter-governmental agreements
- Initial project funding

# Robust Science Case

- Define driver requirements for IFE
- Using existing facilities

# Detailed Facility Design

- Initial: low-rep rate design
- Rep-rate upgrade path

# Construction of Prototype Beamlines

- Low-rep rate
- High rep-rate
- Upgrade path
- Cost engineering

# Establish Project Site

Partners bid

### Facility Construction

Learn from private sector to expedite

### Establish Project Centre

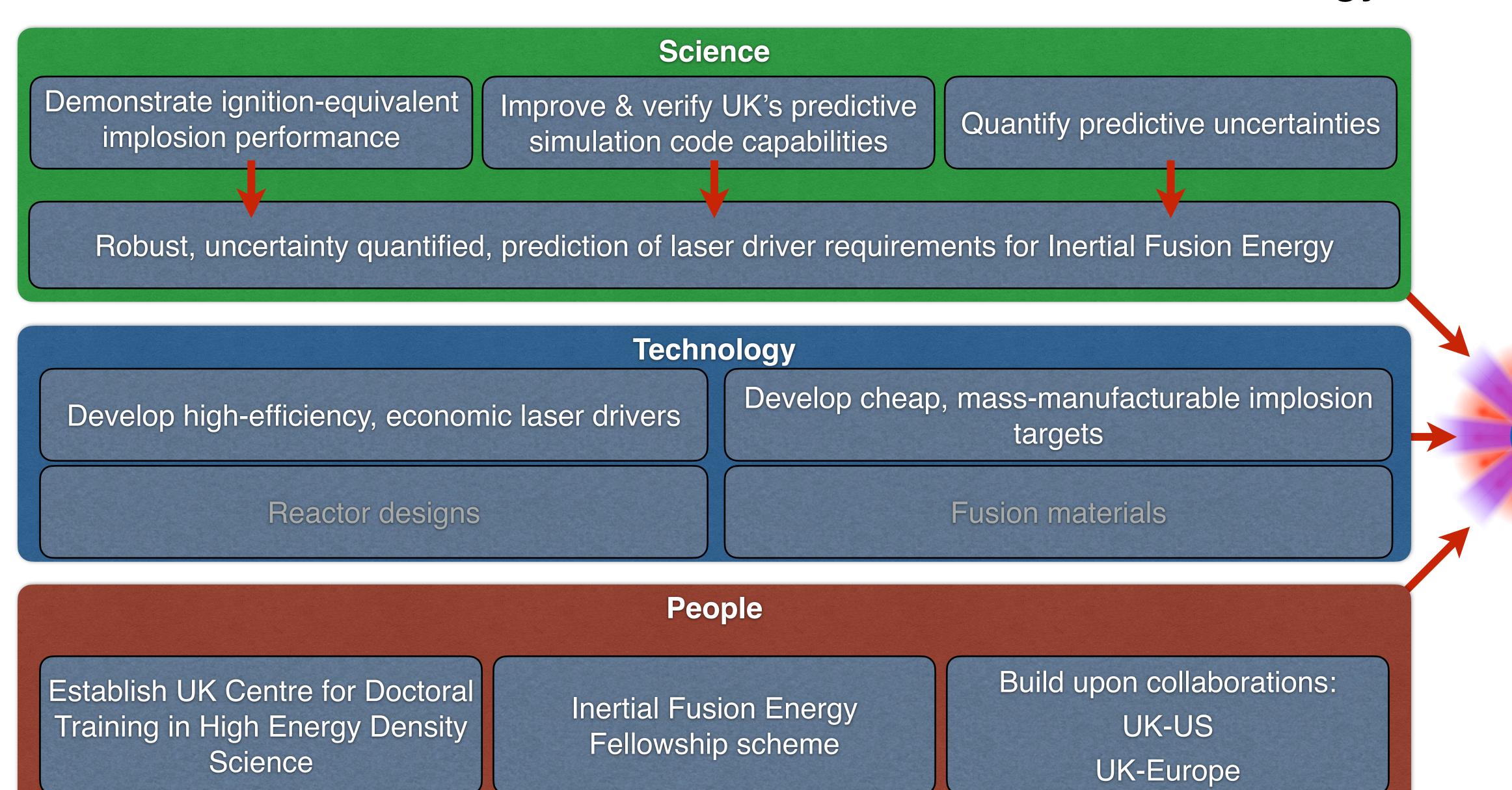
# **Economic Target Manufacturing**

 Readiness for high-rep upgrade

# Low Energy 10 Hz Facility

• 10 Hz operations

### 1st Facility Phase


Demonstration of gain required for IFE

10 Hz Upgrade

#### **2nd Facility Phase**

• High gain @ 10 Hz

### <sup>2</sup>RLiFE: Towards a Reactor for Laser Inertial Fusion Energy



RLiFE

### Summary

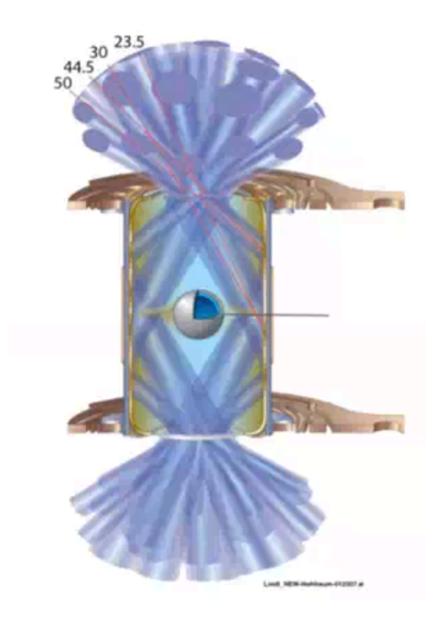
### **Laser Fusion Physics**

- Key physics of ignition are proven
- Need high-gain demonstration

#### <u>UK</u>

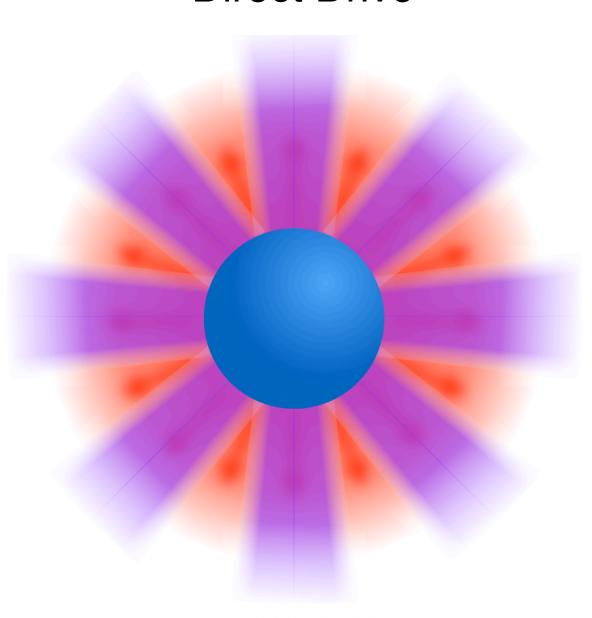
- World-class: research, training, technology
- Wider fusion community (CCFE, First Light, ...)
  - Fusion technology
- Enthusiastic to build partnerships

#### An International Approach to IFE


- Funding precedent: CERN, ITER, Astronomy...
- Multiple potential partners
- Rapid innovation through high investment

### End of Slides

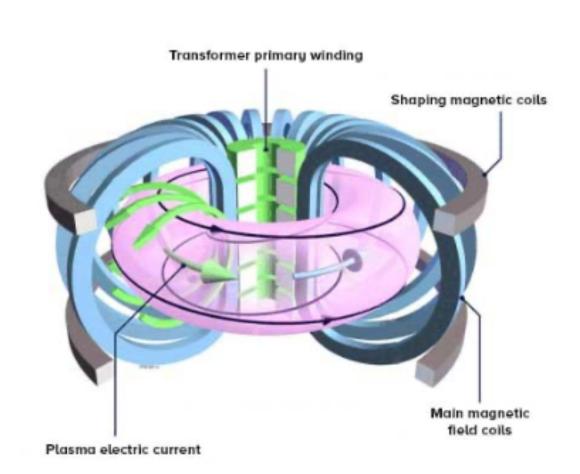
robbie.scott@stfc.ac.uk


### Inertial Fusion Energy

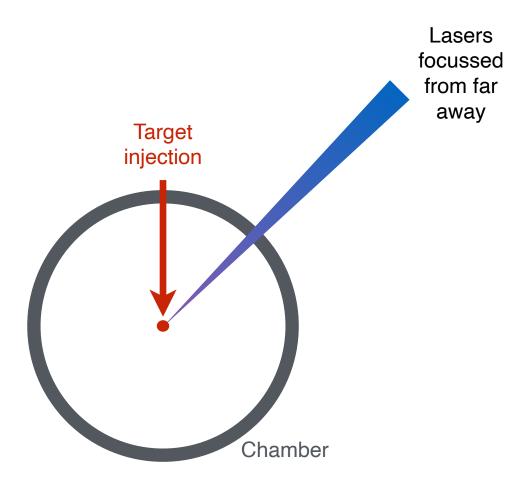
#### NIF / LMJ: 'indirect' drive



- ✓ Good for proof-of-principle
- ✓ Relevance to weapons
- X Very inefficient
- X Complex targets
- **X** Expensive targets
- X Material activation


#### **Direct Drive**




- 5 times higher efficiency: smaller, cheaper, laser
- Simple targets: economic manufacturing
- W High energy-gain: power-plant economics
- X No ignition-scale laser: physics uncertainties

### Why IFE?

- Potential technological advantages
  - Reduced neutron damage
- Lasers enable separation between the hot plasma and critical infrastructure
- Reduced thermal damage
- Reduced tritium inventory (1/10<sup>th</sup>)
- Reduced capital expenditure
- Technological diversity
- Challenges / innovation opportunities
  - Final optics damage
  - Economic target manufacturing
- Potential strategic advantages
  - UK-US relationship
  - UK-US collaborations
  - Significant UK capabilities







Laser fusion: complex components are far from fusion plasma